F.A.Qs Home Discuss ProblemSet Status Ranklist Contest 入门OJ LoginRegister 捐赠本站
Notice:1:注册本OJ方式请见https://www.lydsy.com/JudgeOnline/wttl/thread.php?tid=5671 2:请不要在讨论区中发空白主题帖。
Problem 2438. -- [中山市选2011]杀人游戏

2438: [中山市选2011]杀人游戏

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 3564  Solved: 1097
[Submit][Status][Discuss]

Description

一位冷血的杀手潜入 Na-wiat,并假装成平民。警察希望能在 N 个人里面,查出谁是杀手。警察能够对每一个人
进行查证,假如查证的对象是平民,他会告诉警察,他认识的人, 谁是杀手, 谁是平民。 假如查证的对象是杀
手, 杀手将会把警察干掉。现在警察掌握了每一个人认识谁。每一个人都有可能是杀手,可看作他们是杀手的概
率是相同的。问:根据最优的情况,保证警察自身安全并知道谁是杀手的概率最大是多少?

Input

第一行有两个整数 N,M。
接下来有 M 行,每行两个整数 x,y,表示 x 认识 y(y 不一定认识 x,例如胡锦涛同志) 。

Output

仅包含一行一个实数,保留小数点后面 6 位,表示最大概率。

Sample Input

5 4
1 2
1 3
1 4
1 5

Sample Output

0.800000

HINT

警察只需要查证 1。假如1是杀手,警察就会被杀。假如 1不是杀手,他会告诉警

察 2,3,4,5 谁是杀手。而 1 是杀手的概率是 0.2,所以能知道谁是杀手但没被杀的概

率是0.8。对于 100%的数据有 1≤N ≤  10 0000,0≤M ≤  30 0000


数据已加强!

Source

[Submit][Status][Discuss]

HOME Back